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Harris Yong

Introduction

The suspension of an automobile is a complex system. Not only does it have to support the
entire vehicle and its occupants statically, but also it has to withstand dynamic loads that come from
accelerating, braking and cornering, road variations and imperfections. Furthermore, everything,
from the rigid support control members to the flexible tires and even the seats in an automobile,

effects the overall feel that is perceived by the vehicle’s occupants.

This CIV 205 project aims to address one of the most important components of the
automobile suspension—the helical spring. With some justified simplifications, the analysis of the
helical spring is a tractable task. Although the helical (coil) spring is not the only kind of spring
found in automobile suspension systems, it is by far the most prevalent among passenger cars, and

its role is crucial in maintaining the driveability of cars so equipped with helical springs.

Because of the large number of assumptions required for the analysis of the helical spring,
they will not be listed in a specific section. Instead, they will be mentioned together with the analysis,

whenever necessary.

After the discussion of background theory is complete, two examples will be given. The first
will show how one can evaluate a car with one axle resting on a bump. The other will take into
account impact loading, for example, when a wheel hits a similar bump while the car is in motion.

The results from these two cases will be then be compared.
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General Theory of the Helical Spring

As the helical spring is essentially a twisted bar,
the characteristics of the helical spring can be analyzed
by taking a section of the helical spring (shown in Figure
1) and analyzing the section as a straight circular bar in
torsion. Since the helical automotive spring is used as a
compression and support member, one can assume that
the spring is loaded only axially, about its central axis. In
a fuller analysis, lateral loading and buckling possibilities
should also be considered, but they will not be the
covered in this project. It is assumed that the spring
compresses only in the direction of its axis, with the

spring seats holding the ends in place.

With the above assumption of an axially loaded
spring, Figure 1 shows the forces and moments on a
section of the spring. A simplified view is shown by
Figure 2, where the load F is balanced internally by a
shearing force V and a torque T to compensate for the
fact that I is not applied through the section in
consideration. For the purposes of clarity, the uppercase
letters R and D will refer to the radius and diameter of

the colil, respectively, while the lowercase letters r and d
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Figure 1. Spring element with forces and
moments. (Benham).

Figure 2. Simplified free body diagram
showing a direct shear V and a torque T due
to axial loading. (Popov)
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will refer to the radius and diameter of the spring element, respectively. Although springs of non-

circular cross-sections exist, only the common, circular cross-section springs will be considered.

Superpositioning of Shearing Stresses

F_ Tc The simplest analysis of the helical spring requires some further

T =+
A J

T _Lz + FR; assumptions. First, the coils of the spring are assumed to lie in a plane nearly
m? o

2
F  2FR perpendicular to the axis of the spring such that the angle O in Figure 1 is small.

- m? * w?
-2FROr 4f This assumption allows the section taken for analysis to be nearly vertical,
m®* @R L
eliminating the need to consider an axial force and a bending moment at the section
Equations 1.

Shearing stress taken through the spring. Also, any changes in coil radius are ignored. Thus, there
as a sum of the
direct shear and

torsion are only two stress contributors; one is the result of the applied force F, and the

other is a Torque T that exists because load is collinear with the axis of the coil. By superposition,
the two stresses sum and result in the first line of Equations 1. At this point, it should be noted that

the first term of Equations 1 (the stress due to the shearing force V) is assumed to be acting

uniformly over the cross-section. Note that this averaging results in —— term for the direct shearing
T

. L : .V :
stress. In reality, a better approximation would come from using the expression I—? and finding Q
to the neutral axis and using t as the diameter of the spring element. However, because most texts

appear to use the simplified expression —, I will retain this simplification. Since T =FR, c=r,
w

4
A=rr?and J =TT 5> Equations 1 is simplified, giving the shearing stress on a spring element as

the bottom line of Equations 1. As the size of the spring element becomes small with respect to the
coil (such that r << R), the first term in the parentheses (direct shear) becomes inconsequential.

However, when the two radii become comparable, the first term, due to Torque T, cannot be
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neglected because it is also a significant contributor of the total shearing stress. Nevertheless, a

useful equation for the maximum shearing stress does come out of the above analysis if a stress

concentration factor, K, is used instead of including the first term of the last line of Equations 1.

The result is Equation 2, where the factor K scales the shearing stress appropriately as a function of

the ratio of the radii, compensating for the neglect of the direct shearing term. Figure 3 shows how

K varies with the spring element and coil size. Wahl

proposes that Figure 3 has, as its governing equation,

Equation 3. The general formula for the maximum K
shearing, Equation 2, along with the correction factor K,

will be used for future calculations of shearing stress. Note

that the correction factor still does not consider the change

in radius between the innermost part of the spring element and
the outermost part. In reality, stresses will be higher in the

inner section of the cross-sectional element, as shown in Figure 4.
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i3k — e i | | T
Spring sy —'l-| |

I 4 @ @8 W 12 W W
Ratio of radii. R/r
Figure 3. Correction factor K as
a function of the ratio of radii,
R/r. (Popov)

. =g 2FR K:4%—1+£15 | ,
e 45{—4 5{ ‘ ‘;
Equation 2. _ g
General Equatlo_n 3. b [ o | ;
formula for Correction [
shear stress factorasa 4
using function of coil
correction and spring
factor. radii Figure 4. Distribution of shearing stress
over a spring element’s cross-sectional
area.(Wah)
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Energy Method

Although the above analysis based on superpositioning can be used to determine the
deflection of a loaded helical spring, and thus its spring rate, an energy balance method is also simple
and allows one to see the effects if the coil angle O is significant and cannot be neglected. In this
analysis, a standard co-ordinate system (see Figure 1) is used, and a bending moment in addition to
the torsion should be taken into account. However, changes in coil radii across the spring element

are still considered. From Figure 1, the torsion T or M, = FRCOS , and the bending moment
M, = FRsina , while M, =0. Before continuing, one should note that the work done in deflecting

a spring by axial loading, torsion and bending; they are derived in Equations 4a, 4b and 4c, where U
is the strain energy and u is the strain energy density (by volume). Equations 4b for torsion is
analogous to Equations 4a for axial loading, and Equations 4c for bending can be seen as an

extension of axial loading since bending produces a normal stress.

Equations 4a. Energy Equations 4b. Energy Equations 4c. Energy
due to axial loading. due to torsion. due to bending.
5, 3, }/ o, 6, }/ s
U = [Fdd = (kadd = Y ko2 U = (Td8 = [kedo = 1 k6? o M 2y? L M2
27 2m U=[-=dV= av = 2dAJdx
o] =] o V= e 0V = ot rank
UZ%F161 U :%1-191 ML
2El
v Vo
5, & 2 V1
F ch Ee, y
u= od Eede =—2 u=(rd Gy = —2
JQ' €= 1!’ £== J’ y= JQ' yy =
u= 01 - U2 - r1 - T?
2B 2E 2G 26
du _ du
=u —=u
av av
dU =udV dU =udVv
L 2 L 2
F T? p T 2
U= —dV AdS U=[—dV-= = dAKX
[ [awe [0 L5 = o P
_FiL U = T
2AE T 2GJ
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By energy conservation, the energy imparted to the spring by
the axial loading is equal to that caused by the torsion and bending,
and this equality forms the first line of Equations 5. Further

substitution from Equations 4 completes the derivation for spring

4 4
deflection due to an axial load. Using J = T 5> | =TT A and

L =2mRsear , where n is the number of coils gives the useful
equation for deflection, Equations 6. Note that when the spring is
closely coiled (O is small), the simplified equation shown as Equation 7

is accurate.

If Equation 7 for deflection and Equation 3 for shearing stress
are compared, the shearing stress can be expressed as a function of the
displacement, the modulus of rigidity, and the spring and coil
dimensions, as shown in Equations 8. This equation is useful as one
can check whether a certain spring can be allowed to undergo a certain

deflection without failure. Comparing Equations 7 and Equation 8
now, an expression for O can be cast in terms of T. This is shown as

Equation 9.

Also of use in the automotive = Gr

- 4FR3% \ T 4R%n
r

F
Fj

industry is the stiffness factor, S, for a

iven spring. This is simply the amount
& Prng Py Equation 10. Spring

. stiffness.
of force needed to create a unit of

Uaxial = Utorsion +U

2 2
Yrs= T, ML
2GJ 2El
12 H 2
%Fé _ (FReosrfL _ (FRsinafL
2GJ 2El

2p2 a2
%F5:FRL o§a+sma
2 GJ El

5= FRL o a N sina
GJ El

Equations 5. Energy
balance and deflection
equation of a loaded spring.

bending

1]

_4FR°nsear [os’ a . 2sina

- ré Eh G E E
Equation 6. Deflection of a
loaded spring after
substitution of moments of
inertia.

_4FRn

1)
Gr*

Equation 7. Deflection
of a loaded spring with

2FR

T = 3

_4FRn

T

T _2FRK Gr*

5 m® 4FRn
Gr
2rR%n

T =KJd

Equations 8.
Shear stress
based on
deflection.

3,
6:4Fﬁn
Gr

EFR
T 3
En]‘lTRZ

-1
K Gr

T=

Xl

0o

Equations 9.
Deflection
based on
shear stress.
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deflection and thus has the dimensions of force over length. Equation 10 shows the derivation of

the stiffness factor.

Impact 1 oading

Impact loading occurs when a spring is given a sudden loading. What
results is an incremental stress, AT. Typically, this loading is characterized by
the velocity of the incoming load, v. In order to find express AT in terms of
v, Wahl first defines a surge wave velocity, v ; its equation is defined as
shown in Equation 11. This is the speed at which a wave is propagated
through the spring. The propagation takes a finite time, At, to travel through
the spring, causing an incremental deflection, Ad, and both are shown in
Equations 12. Setting Ad equal to  in Equations 9 and solving for AT gives
the incremental stress due to impact loading (Equations 13). In summary, the
incremental deflection and stress Ad (equations 12) and AT (13) should be

taken into consideration when a spring undergoes impact loading,.

_rJf;

Vo= — [ —

R\ 2p
Equation 11.
Surge wave
speed of a

impact loaded
spring.

_ 21mRn
v,

s

At

A =it = v 2RO

VS
ZRn_VZR% [20
r |G r G

2p

R

Ad =v

Equations 12. Time for
surge wave to
propagate through
spring and the resultant
incremental deflection.

2
Ac‘5:vgﬁiﬂ 2p
r

G
2
6:&7 nimR
K Gr
A =0
2R’n [2p _ 1 2nmR?
r G K Gr
T=AT

Kvy20G

Vv

Equations 13.
Incremental stress
due to impact
loading.
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Applying Theory to the Automobile Suspension System

Having derived equations for the maximum shearing stress of a spring, the deflection under
load and spring stiffness, the automotive suspension can be considered in more detail. Because the
tires and chassis contribute also to the overall deflection of the wheels, formally, these should also
be taken in consideration. However, Gillespie points out that the spring rate of a tire is many times
greater than that of the typical automotive suspension helical spring, and because the tire and spring
are in series, using the stiffness of the spring alone can approximate the spring rate of the vehicle.
Another error in the simplification of the suspension system is that, in most cases, the load caused
by a bump is not directly inline with the spring’s coil axis. Consequently, the axial load, F, seen by
the spring is often not the load that the bump causes directly; other suspension members such as the

control arm act as a lever arm.

Statically I oaded Front Axle

As mentioned in the introduction, I have designed an example of a statically loaded front
axle. Throughout the examples, an effort has been made to keep all numbers (geometry, size, etc.)

representative of those found on a passenger automobile.

A suspension designer wishes to reduce unsprung weight of a vehicle by replacing a
vehicle’s front steel helical springs with aluminum alloy springs without changing the
spring stiffness, the coil diameter (D = 14 c¢m) or the number of coils per spring.
The vehicle weighs 1500 kg, with 60% of its weight resting over its front wheels
statically. Assume that the helix angle is 8 or less such that Equation 2 can be used
with adequate accuracy. Help determine if this change should be allowed and if it is

beneficial by performing the following calculations:

a) Determine the weight over each front wheel that has to be supported by the

springs.

Weight,_... :1500(969.81N 9'60D axle _ 441N
kg axle 2wheels wheel

9
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b) Determine the spring element radius for the current design if the spring stiffness

is S= 20000'%]. Use G, =77GPa.

steel

_ Gr*
4R®n

(o Easﬁngx _ {20000 Ho.07m)’ 8
G

E 77x10°Pa

7.31Imm

O -

c) Using Equations 3 for the correction factor, calculate the maximum shearing
stress of the steel spring if the front axle lies over a bump 8 cm high and that the
car raises by 4 cm when resting over the bump (such that the deflection from a
car at rest is 4 cm). Also determine the factor of safety for the shearing stress,

assuming that the ultimate stress in shear for the steel is 900 MPa.

0.07 _
_4R(-1 oe1s_ 400 ioem ! 0615 _
K = + = + =1.15
aR/-a" RI 4007 . -4 007 .
r r 7.31x107°m 7.31x107°m

2|20000N// (0.08m - 0.04m)).07m

2PR_ AR -y 15 ( i - )

™ 0 n(7.31x10°m)

2FR _, ;241N [D.07m
n(7.31x10m)

T =Tpymp + T gaic =105.0MPa+579.2MPa = 684.2MPa

static
Tulllmate = 900MPa =
T 6842MPa

=105.0MPa

Tbump = K

=K

T static 3 =579.2MPa
m

F.S=

Comment: For the above representative automotive suspension spring, the

correction factor is important as it raises the shearing stress by about
15%. Thump is the shearing stress due to the 4 cm of deflection
caused by the bump, while Tg¢,¢ic is the shearing stress from the

weight supported by a front wheel without the existence of the

bump. The total shearing stress is the sum of both these values.

d) Find the mass of a steel spring by first calculating the spring volume and using
Psteel = 7860k%3 :

m=pV = pAL = p(HZXZmRseca)
m= 7860“%3 (n(7.31>< 10°mf in(s) [0.07mi3eds°))
m=4.6%g

10
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Comment: The 8° angle is arbitrary and will affect the mass calculated. To
determine the angle exactly, more will need to be known about the
geometry of the suspension system. Furthermore, the angle will vary
with loading. The choice of 8° allows the derived formulas to be used

with confidence of moderate accuracy.

e) For aluminum alloy, recalculate the spring element radius necessary to maintain

the same stiffness, using G, =26GPa.

_Gr
4R°n
1
1 3 o
- EAS%E ) F20000Y/ rf0.07m)° B o 5omm
G E 26x10°Pa E

Comment: Due to the reduced modulus of rigidity for aluminum, a larger spring

element is necessary to maintain the original stiffness of 20000 N/m.

f) Recalculate the correction factor, maximum shearing stress and the new factor of

safety when aluminum alloy is used.

0.07 _
(AL oers_ 4 Dosox10°m™L, 0615 120
. 0.07m Z4 007 '
4% 4 I% 4 A.SQXlOﬂm 4 r96.59><10’3m
2(20000N// (0.08m - 0.04m))0.07m
fyy =K ZR g ASBR _ 3 54 foooos ) = 485MPa
ﬂf w n(0.59x10°m}’

2FR _; o 23415 D.07m

T =K 1. = 267.7MPa
sl m? niQ.SQmX1O’3mj

T = Tyymp + Taic = 48.5MPa+ 267.7MPa = 316.2MPa

static
ultimate — 240MPa =0.
T 316.2MPa

Fs=L

Comment: Due to the increased spring element radius, the correction factor has
also increased. More importantly, the above calculations show that
the aluminum is unable to meet the original specifications of spring stiffness and
geometry without failure, and that aluminum is not a viable option. It
would be necessary to modify the coil’s geometry in order to both

retain the stiffness and be of sufficient strength.

11
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f) Estimate the percentage reduction in spring weight, if any, using
=27709/ ;.
Pa Ok m?

My = PV = pAL = p(rw 2 [2mRsear)
my = 277(}(%3 (71(9.59><10‘3 m)f in(s) [0.07m[3eds°))

m,, =2.84kg

%

reduction —

— Mo =My H]ocp/o =60.6%
r‘nsteel

Comment: The above shows that if the aluminum were able to support the load,

there would be a significant weight savings.

Bump Impact at Significant Speed

When the load is not static but dynamic, such as when the bump is hit while the vehicle is in
motion, there exists an incremental shearing stress due to the impact loading. The following example

will show the effects of impact loading.

Consider the previous example. Now, the designer wishes to determine the
maximum speed at which a similar bump (one that raises the axle 4 cm) can be

approached without spring failure by shear. Use the same properties for steel.

a) Determine how much incremental impact shearing stress, AT, can be applied if a

minimum factor of safety of 1.1 is prescribed.

T

— _ ultimate

Tlmpact - ES

T+AT = Tultlmate
F.S

AT = rulnmate -7
F.S

_ 900MPa

AT -6842MPa =1340MPa

Comment: The incremental stress due to impact loading limits the speed at

which the car can be driven over the bump.

12
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b) Using Equations 12, determine Vspring> the maximum average speed at which

the spring can be allowed to deflect for the AT calculated eatlier.

At = Kvspring V ZpG

1340x10°Pa - 3'35%

AT
Vspring = =
Ky2pG 1.15\/2 U86d<%3 77x10°Pa

Comment: In this part of the example, a rearrangement of Equations 12 is used
to determine the maximum speed at which the spring can be

deflected in order to meet the factor of safety requirement.

c) Using Figure 5, determine the maximum speed at
’ Vspring

which the car can be driven. Take the radius of the

. . . V,
wheel/tite combination, thee] to be 0.3 m and e
the effective height of the bump (the necessary
. _ "
deflection), h, to be 0.04 m. Take the width of the
bump to be 0.10 m. v
h h hwcar . -
Vang =TT 47T g Figure 5. Schematic of wheel
A traveling over bump at speed.

\Y @

oW L 0.1m
 Vepring Vspring Erwheelz - (rwheel - h)2 )2 + B E_ 3.35% %(O.Bm)z - (0.3m— 0.04m)2 )2 + ?E
= h 0.04m = Soam
v, =167 r% =602 k% - 37.4mph

V

Comment: Several assumptions were made in this step. First, the calculated value

of Vsprings the maximum average speed of spring deflection was used

to determine the speed of the car. It is likely that the absolute
maximum  spring deflection speed is significantly higher,
overestimating the car’s highest permissible speed. The above
formula is derived by equating the time needed for the 0.04 m
deflection to the time needed for the car and wheel to travel half the
width of the bump. Hence, the width of the bump also affects the

solution.

One assumption that may not be entirely appropriate is the neglect of the shock absorbers.

Most shock absorbers have gases at a low enough pressure so that they do not provide any

13
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supporting or springing effect when the car’s wheels are not deflected. However, in this case, the
wheel is deflected quickly, and the shocks will have a stiffening effect, increasing the overall spring

rate. Nevertheless, this example shows that impact loading needs to be considered in spring design.

14
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Conclusions

This project has covered several aspects of the helical spring in the context of an
automobile’s suspension. First, internal forces and torsion were used to derive the shearing stress of
a loaded spring. It was noted that the shearing stress is a result of a direct shear and torsion, and that
it is common to use only the torsional stress component explicitly, while a correction factor is used
to take care of the direct shear. An energy method analysis followed, and using the internal energy
due to axial loading, torsion and bending, an expression for deflection was written in terms of the
axial load. This was simplified assuming that the helix inclination angle was small. Manipulations and
comparisons of these equations allowed the determination of the shearing stress and deflection in
terms of other variables as well as a formula for spring stiffness. Assuming that a surge wave
propagated through the spring, expressions for incremental deflection and incremental shear stress
were derived for the case of impact loading where the velocity of the impact with respect to the

spring is known.

Following the theoretical analysis were two examples, showing static loading and impact
loading. In the first example, a switch to aluminum meant that it was impossible to keep the coil
dimensions unchanged if the spring stiffness were to be held constant even though a significant
weight saving could come from the use of aluminum. The second example showed that impact
loading limited the maximum speed at which a car can be driven over a bump due to the

incremental stress and deflection.

Finally, it should be noted that this project covers only the basics of the helical spring. In
most calculations, several assumptions were made. They included that the helix angle be small and

that the shear stresses be distributed evenly over the spring element’s cross-section (in essence

15
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neglecting curvature). Fatiguing, lateral loading and temperature effects were entirely ignored.
Furthermore, other dynamic effects such as resonance and spring clashing were not discussed in this
report, and so neither was the fact that the spring is not the only energy absorbing device in the

automobile’s suspension system.

Despite ignoring the above factors, the level of analysis appeared to generate answers in the
correct order of magnitude. However, it appears that the internal shearing stresses calculated were
rather high. Perhaps the analysis led to an overestimation of the internal shearing stresses. Also likely
is that the material property data were not fully representative of those used as automotive
suspension springs. The real materials used are likely laboriously treated to allow for large deflections
without significant creeping, fatiguing or failure. Nevertheless, the theory covered and the
calculations performed appear to have been sufficient for a preliminary analysis of the helical spring

in a car suspension.

16
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